If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+47y-16=0
a = 3; b = 47; c = -16;
Δ = b2-4ac
Δ = 472-4·3·(-16)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(47)-49}{2*3}=\frac{-96}{6} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(47)+49}{2*3}=\frac{2}{6} =1/3 $
| 12k+2(-1)=38 | | Y=1-3/2x | | 23u^2-5u=0 | | 8(g-1)=56 | | 25.12=4x | | Y=2.65x+2.50 | | 4+8p-4=0 | | 3x2-13x+21=0 | | 2(x-1)1/2-3=10 | | t=27-15 | | 5n-7n=-2 | | 8^3-2x=512 | | 2^x=18 | | 3a+2a=8a-15 | | 3(4x-4)=-3x-48 | | 3^x=26 | | -148+3x=-4x+55 | | 12+4h=20+2h | | 4x-7=-x-6 | | x^-64=0 | | 4x-7x=-x+4 | | 90-x.3=180-x/2 | | 3c−12=6 | | 6x+42=40 | | m^+8m+7=0 | | 5k2-10k+48=0 | | 10(6x-7)=290 | | 24-x^2+5x=0 | | 57+d^2=15 | | 5k^2-10k+48=0 | | 8x=5) | | -2(6y-2)-y=-3(y-5) |